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Abstract

We use data collected on 18,1-ha live trapping grids monitored from 1994 through 2005 and on 

five of those grids through 2013 in the mesic northwestern US to illustrate the complexity of the 

deer mouse (Peromyscus maniculatus)/Sin Nombre virus (SNV) host-pathogen system. Important 

factors necessary to understand zoonotic disease ecology include those associated with distribution 

and population dynamics of reservoir species as well as infection dynamics. Results are based on 

more than 851,000 trap nights, 16,608 individual deer mice and 10,572 collected blood samples. 

Deer mice were distributed throughout every habitat we sampled and were present during every 

sampling period in all habitats except high altitude habitats over1900 m. Abundance varied greatly 

among locations with peak numbers occurring mostly during fall. However, peak rodent 

abundance occurred during fall, winter and spring during various years on three grids trapped 12 

mo/yr. Prevalence of antibodies to SNV averaged 3.9% to 22.1% but no grids had mice with 

antibodies during every month. The maximum period without antibody-positive mice ranged from 

one month to 52 months, or even more at high altitude grids where deer mice were not always 

present. Months without antibody-positive mice were more prevalent during fall than spring. 

Population fluctuations were not synchronous over broad geographic areas and antibody 

prevalences were not well spatially consistent, differing greatly over short distances. We observed 

an apparently negative, but non-statistically significant relationship between average antibody 

prevalence and average deer mouse population abundance and a statistically significant positive 

relationship between the average number of antibody positive mice and average population 

abundance. We present data from which potential researchers can estimate the effort required to 

adequately describe the ecology of a rodent-borne viral system. We address different factors 

affecting population dynamics and hantavirus antibody prevalence and discuss the path to 

understanding a complex rodent-borne disease system as well as the obstacles in that path.
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 Introduction

The study of hantaviruses has attracted increasing attention from ecologists in the last two 

decades (Schmaljohn and Hjelle 1997, Mills and Childs 1998, Singleton et al. 1999, 

Escutenaire et al. 2000, Calisher et al. 2002, Murua et al. 2003, Piudo et al. 2005, Jonsson et 

al. 2010, Mills et al. 2010, Zhang et al. 2010, Vadell et al. 2011), resulting in a proliferation 

of scientific articles addressing population dynamics of the rodent hosts, the prevalence of 

infection in their populations and rodent-pathogen dynamics. Many researchers have gone 

further and have attempted to model some of these aspects based on climate and 

environmental characteristics (Murúa et al. 2003, Eisen et al. 2007, Luis et al. 2010, Andreo 

et al. 2011, Loehman et al. 2012). Although modeling attempts have proven to be very 

useful and have provided valuable information about different rodent-pathogen systems, 

modeling can be confounded by complexity created by temporally and spatially limited data. 

Studies conducted over one or two years and in one or two locations such as many of the 

preliminary efforts to understand hantavirus/rodent systems have the potential to be 

interpreted as representative of broader temporal and spatial scales while results may only be 

a product of short term local conditions.

In 1993, a cluster of a human disease, later named Hantavirus Pulmonary Syndrome (HPS), 

occurred in the southwestern United States. The causative agent was a virus, later named Sin 

Nombre virus (SNV), and the reservoir host was determined to be the deer mouse 

Peromyscus maniculatus (Nichol et al. 1993, Childs et al. 1994). Because the cluster 

occurred following an El Niño event, it has been hypothesized that, in at least areas of the 

arid southwestern United States where deer mice are not always persistent, human risk may 

be related to a bottom up trophic cascade (Parmenter et al. 1993, Yates et al. 2002). In the 

trophic cascade hypothesis, increased precipitation results in improved plant productivity, 

and deer mouse abundance and distribution increases, increasing the number of infected deer 

mice and prevalence of infection in deer mice, translating to greater disease risk to humans. 

Though not usually stated as such, this hypothesis has been assumed to be true for other 

areas within the distribution of deer mice and in other rodent/hantavirus systems throughout 

the world.

In response to the 1993 HPS cluster, broad scale, long-term field studies were initiated in 

1994 in the US to provide ecological and epidemiological data necessary to understand the 

deer mouse/SNV system and devise mechanisms, including predictive models, to reduce risk 

of human infection (Abbott et al. 1999, Calisher et al. 1999, Mills et al. 1999, Douglass et al. 

2001, Mills et al. 2010). Several host-related factors make the deer mouse/SNV system very 

attractive for studies of the ecology of a zoonotic disease. Specifically, the deer mouse 

reservoir is: 1) abundant; 2) sufficiently widespread geographically to make understanding 
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the disease system broadly applicable; and 3) easy to capture and recapture for both 

abundance estimates and for collecting blood samples for antibody testing.

It is clear from decades of deer mouse ecological studies that the deer mouse meets the 

criteria that make it an excellent model for studying the ecology of a zoonotic disease (King 

1968). Long before hantavirus studies began, it was well known that deer mice could be 

abundant (Calhoun and Casby 1958) and intensive research conducted since then has proven 

the capacity of this species to reach high abundances (Terman 1966, Mills et al. 2010). Deer 

mice are geographically very widespread in North America and are found across most of 

North America, from Canada to Mexico, inhabiting a wide range of habitats, including 

rainforests, deserts, meadows, sage brush, and grasslands (King 1968, Hall and Kelson 1981, 

Kays and Wilson 2009). Several studies have shown that deer mice are easy to capture 

(Terman 1966, Douglass et al. 2001). In addition, it has been shown that Peromyscus spp. do 

not have a significant negative response to anesthesia and blood/saliva sampling protocols 

suggesting they are an appropriate species for hantavirus research (Parmenter et al. 1998, 

Douglass et al. 2000).

Although much is known about the ecology of SNV in the US, there still is some 

controversy concerning some aspects, as shown in a review by Mills et al. (2010). Because 

the US deer mouse/SNV studies have potential to act as models for other rodent-borne 

diseases in other parts of the world, our intent is to use the results of 19 years of continuous 

study of the deer mouse/SNV system in the northwestern United States to demonstrate the 

possibilities of and obstacles to understanding a complex rodent-borne disease system. In 

doing so we focused on the following aspects of the deer mouse/SNV system:

1. The potential of deer mouse populations to fluctuate synchronously across the 

various habitats in which deer mice reside.

2. The potential for deer mouse populations to clearly respond to changes in 

climate, particularly temperature and precipitation that can result in changes in 

plant productivity.

3. The potential for infection, either prevalence and/or abundance of infected deer 

mice to vary with deer mouse abundance.

Based on the study of these aspects along 19 years we discuss the possibilities and 

requirements needed for successfully model the dynamics of a rodent-borne viral system. 

We believe that a description of realities of the complexity of the deer mouse/hantavirus 

ecological system in the northwestern US will be useful in planning future research in that 

system as well as other rodent reservoir/disease systems.

 Methods

We based the Montana deer mouse/SNV field study on a large, standard, mark-recapture 

effort in which monthly blood samples were collected from mice. We include published data 

and new data collected since 2000 to 2013. Initial results were presented in Douglass et al. 

(1996) and Douglass et al. (2001). Some data, addressing climate effects on abundance (Luis 

et al. 2010) and plant productivity effects on abundance (Loehman et al. 2012) primarily 
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from the Cascade site have been used in previous work. Papers on dispersal (Lonner et al. 

2008, Waltee et al. 2009) used data from Cascade and Polson. Carver et al. (2010) used 

Cascade data to examine sampling frequency on results and Madhav et al. (2007) and Carver 

et al. (2011) used data to examine delayed density dependence prevalence. The mice were 

released to the capture grids and the blood returned to the laboratory for antibody testing. 

Details of field procedures are in Douglass et al. (1996) and Douglass et al. (2001). The 

basic sampling units were 1-ha square grids consisting of 100 evenly spaced Sherman live 

traps. Eighteen grids were constructed, three at each of six locations in western and central 

Montana (Figure 1, Table 1). One grid at each location was used as a control to determine 

the effect of the bleeding protocol on deer mouse populations. The other two grids were used 

to collect blood samples. Control grids were sampled throughout the study even though 

bleeding was determined to have no significant effect on deer mouse populations (Douglass 

et al. 2000). Continued sampling on control grids provided additional data from more 

populations. Grids were placed in sagebrush and grassland habitats as well as forested 

habitats and a meadow at elevations ranging from 731 m to 2050 m (Table 1). All grids were 

sampled for three consecutive nights each month from May through October. Grids at 

Cutbank, Gold Creek, and CM Russell were sampled 70 months each. The high altitude site, 

Wisdom, was sampled 59 times. Three grids (grids 10, 11 and 12 at Cascade) were sampled 

every month throughout the study for a total of 232 months. We terminated the major 

portion of the study in 2005. However, at two locations, Cascade and Polson, we continued 

sampling through fall 2013 with three grids sampled every month (grids 10, 11 and 12 at 

Cascade) and two grids sampled from May through October (grids 4 and 5 at Polson) for a 

total of 112 months.

We used the Minimum Number Alive (MNA) (Chitty and Phipps 1966) for abundance 

estimates and Minimum Number Infected (MNI; antibody prevalence × MNA) for 

abundance of infected deer mice. In earlier papers (Douglass et al. 1996, Douglass et al. 

2001) data were averaged for all grids. Here, we present the results from each grid 

separately avoiding averaging which tends to mask important factors that may play a role in 

the rodent/virus system. We present the months in which high abundances (Month of peak 

abundance during each year) and prevalence (Month of peak prevalence during each year) 

were most frequent for each grid. We present the months of peak abundance for each of the 

eighteen grids of the study while the months of high prevalence are presented for twelve (the 

other six grids were control grids on which blood samples were not taken).

We investigated the possibilities of a widespread synchrony among populations by 

comparing population trends in abundance and antibody prevalence in a pairwise fashion. To 

investigate trends in antibody prevalence we excluded those grids where few or no mice 

were present. We used a Spearman Correlation index with a P=0.05 significance level to 

study trends in abundance and infection among grids.

To gain insight into the broad scale relationship between abundance of deer mice and 

infection with SNV, we performed simple linear regressions between average prevalence of 

SNV antibodies and average MNA, and between average MNI and average MNA from 10 

grids in Montana. We did not include data from Wisdom because of the few number of deer 

mice captured.
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 Results

Throughout the 19-yr study there were 16,608 individual deer mice captured and 10,572 

blood samples collected with a trapping effort of 851,000 trap nights. Deer mice were 

captured in all locations and habitats across Central and Western Montana (Table 1, Figs. 2 

and 3). At least periodically, deer mice were very abundant, except at high altitude (Wisdom, 

Fig. 2). The 1994–2005 average MNA ranged from 0.48 on one Wisdom grid to 52.7 on one 

Polson grid (Table 1). Except for the subalpine location at Wisdom, deer mice were present 

at all six locations over the entire study. However, SNV antibodies were not present during 

all months on any of the grids (Figs. 2 and 3, Table 2).

The maximum period without antibody-positive mice ranged from one month (a single 

trapping session) at Polson (grid 5) to 52 months at CM Russell (grid 18; Table 2). Longer 

periods without antibodies occurred at the Wisdom grids but that location was at high 

altitude and deer mice were frequently absent (Table 2, Fig. 2). Even at the location where 

we sampled monthly and continuously from 1994 through 2013 (Cascade) there were long 

periods (up to 47 months) with no antibody positive deer mice detected (Table 2, Fig. 3).

There was little temporal synchrony in MNA across the six locations and 18 grids (Figs. 2 

and 3). Examples of inconsistent fluctuations are most evident when populations are 

compared between Polson and Cascade, the two locations we sampled the longest. The large 

population surge seen at Cascade from 2001– 2004 did not occur at other locations and 

Polson populations periodically and more frequently reached high numbers (Fig. 3). The 

populations at Polson reached high numbers during 2001–2004 but these numbers were not 

sustained over winter as they were at Cascade during 2001–2004. Furthermore, there was 

little synchrony in antibody prevalence for the 12 bleed grids (Figs. 2 and 3). The highest 

MNAs occurred mostly during the fall but the highest prevalence occurred mostly during 

spring (Table 1). Similarly, the percentage of times we found no antibody-positive mice in a 

given month also varied considerably among locations and even among grids within a 

location (Table 2). However, September and October tended to be the months with the 

lowest antibody prevalence (Table 2). Deer mouse populations seemed affected by seasonal 

weather changes (Figs. 2 and 3; Table 1). Highest abundance occurred in late summer/early 

autumn for every grid except for one grid at Cascade (with high abundances also frequent in 

late winter) and one grid at Cutbank (with highest abundance more frequent during spring).

Intra-location fluctuations (i.e., grids within the same location) in abundance in this study 

were inconsistent for every location except for two grids in Wisdom and two grids in Polson 

where populations fluctuated synchronously (22%; Table 3). Overall, 21/153 (13.7%) of the 

grids had similar abundance trends (Table 3). Similar habitats in different locations showed 

similar population trends in 10.7% of the pairwise comparisons (3/28; Table 3).

Intra-location fluctuations in antibody prevalence in this study were inconsistent for every 

location except for Gold Creek (Table 4). Overall, antibody prevalence correlations were 

found between 8/45 (17.8%) pairs of grids, two of which were negatively correlated (a pair 

of grass grids and one grass-forest pair (Table 4).
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The relationship between average SNV antibody prevalence and abundance of deer mice 

appeared to be negative, but was not statistically significant (r=-0.03; p=0.69), while the 

relationship between abundance and number of antibody-positive mice (average MNI) was 

positive and statistically significant (r=0.5; p=0.00; Fig. 4).

 Discussion

 The potential of deer mouse populations to fluctuate synchronously geographically and 
across the various habitats in which deer mice reside

We found deer mice to be abundant most of the time in Central and Western Montana and 

demonstrated marked fluctuations in abundance. Unlike deer mouse populations in the 

southwestern US (Yates et al. 2002, Mills et al. 2010), the only place deer mice were not 

continuously present in Montana was in high altitude (>2440 m) subalpine forests 

(Wisdom). The lack of a consistent presence of deer mice at Wisdom probably resulted from 

this high altitude location having extreme environmental conditions and fluctuations in 

resource availability (snow cover from early October until the end of June).

When planning to use deer mice as examples for zoonotic disease studies, variable and 

inconsistent population dynamics that occur among locations must be expected. The 

complexity presented by this variability is to be expected in other rodent-borne zoonotic 

disease systems as well, because much of the variability has to do with the complicated 

population dynamics of many rodent species. While some groups of rodents (e.g., several 

species of microtines) have fairly regular annual or multi annual cycles, cricetines (e.g., 

Peromyscus spp.) generally have irregular cycles and experience outbreaks that do not seem 

to respond to a single factor but to a combination of several interacting factors (Jaksic and 

Lima 2003, Singleton et al. 2010). A good example of this complexity is highlighted by the 

two different population dynamics of deer mice observed at Cascade versus Polson, the two 

locations with the highest average abundances. During the 19 years of study, at Cascade 

there was what appears to be one huge population irruption at the end of 2002, whereas 

Polson experienced several moderate irruptions. Although the two study areas are only 

approximately 150 km apart, they have very different vegetation (Cascade is grassland; 

Polson is sagebrush and forest) and weather. These differences are likely responsible for the 

different population dynamics.

Data in table 5, in a cursory fashion, show that fairly large differences in deer mice 

abundance and antibody prevalence also occur over much broader geographic regions than 

just across Montana. Climates and habitats vary considerably across the western US with 

dryer climates in the south (New Mexico and Colorado) and more mesic in Montana and the 

Arizona sites (Arizona sites were located at fairly high altitude).

 The potential for deer mouse populations to clearly respond to changes in climate, 
particularly temperature and precipitation that can result in changes in plant productivity

The bottom-up trophic cascade hypothesis with high rainfall ultimately leading to increased 

human risk of HPS was proposed in 1993 (Parmenter et al. 1993, Yates et al. 2002). In South 

America, several hantavirus reservoirs also have irruptive population dynamics, some of 
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which are of great relevance to human health due not only to the frequency and magnitude 

of their outbreaks, but to their proximity to human population (Jaksic and Lima 2003, Murúa 

et al. 2003). In a review of South American rodent outbreaks, Jaksic and Lima (2003) 

studied more than 60 irruptive events that have been documented since the Spanish conquest 

in the 16th century. These authors conclude these outbreaks are closely associated with 

exogenous factors, mainly bamboo blooming and increases in rainfall, being probably the 

result of the populations closely tracking changes in the environment. However, though 

exogenous factors associated with outbreaks are sometimes easy to demonstrate (especially 

in the case of important outbreaks), establishing the exact mechanism by which they affect 

rodent populations, and the way these interact with regulatory factors intrinsic to rodent 

populations is exceedingly complex (Krebs and Berteaux 2006). We are faced with very 

complex interactions among climatic factors, plant resources and abundance of predators 

and competitors (with different time lags), so that the result is a multifactorial hypothesis 

that may be easy to visualize but difficult to test. These interactions, of course, result in 

trustworthy predictions being extremely difficult to obtain. The difficulty is illustrated by our 

own attempts to predict deer mouse abundance in Montana based on climatic data (Yaffee et 

al. 2008, Luis et al. 2010) and remotely sensed plant productivity (Loehman et al. 2012).

The modeling attempted by Yaffee et al. (2008) was not successful in improving 

predictability of deer mouse abundance by adding climate data to simple density-dependent 

models. On the other hand, Luis et al. (2010) were able to model deer mouse population 

dynamics (survival, recruitment, abundance etc.) at the Cascade location based on climate 

data. This was a complex model, dependent on lags of up to four months and the results 

depended on season. The most obvious factor contributing to the complexity of this model is 

that increases in precipitation during winter resulted in deep snow cover, which may 

negatively affect deer mouse activity and survival, whereas increased precipitation in May 

can result in increased plant productivity later in the season, which could increase deer 

mouse survival and recruitment. The model constructed by Luis et al. (2010) was not 

successful for Polson populations or for peridomestic populations at Cascade (A. Luis, 

personal communication). Loehman et al. (2012) constructed models based on weather data 

and remotely sensed plant productivity at the Cascade location but were unable to predict 

rodent populations using those data. For the first four years of the study for which remotely 

sensed productivity data were available, deer mouse populations increased as primary 

productivity increased. However, during the fifth year, as plant productivity increased, the 

deer mouse population decreased significantly. As suggested by Mills et al. (2010) the 

disconnection between plant productivity and deer mouse abundance may have resulted 

from intrinsic factors in the deer mouse population which will likely vary among locations. 

Population factors such as survival rates, timing of reproduction, reproductive rates (and 

their negative density-dependent feedback loops) need to be investigated and included in 

future predictive models. Some aspects of population dynamics have been included in 

modeling attempts of the Cascade data from earlier parts of the study. Luis et al. (2010) 

demonstrated complex climate effects on deer mouse population dynamics at Cascade but 

not at Polson (Luis, personal communication). Later modeling showed interaction between 

low abundance and disappearance of infection in deer mice at both Cascade and Polson 

(Luis et al. 2015).
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 The potential for infection, either prevalence and/or abundance of infected deer mice to 
vary with deer mouse abundance

Douglass et al. (2001) found what seemed to be a clear negative relationship between deer 

mouse abundance and current antibody prevalence of deer mice in Montana. However, this 

relationship, also observed in other hantavirus/rodent systems (Niklasson et al. 1995, Mills 

et al. 1999), is not so clearly shown in our results. The main difference in past results and 

our results arose from including in the analyses presented here the zero prevalences, not 

included by Douglass et al. (2001). A significant negative relationship between antibody 

prevalence and abundance has been associated with a dilution effect produced by the high 

percentage of typically non-infected juveniles in periods of high abundance (i.e., fall). This 

dilution effect was proposed to be part of a three step mechanism in which recruitment of 

uninfected juveniles during the spring-summer breeding period resulted in high population 

densities but low antibody prevalence in the fall. Then, after cessation of recruitment, the 

accumulation of transmission events and over-winter mortality, lead to low density 

populations with high hantavirus antibody prevalence during spring (Mills et al. 1999). 

Madhav et al. (2007) built a model to test this hypothesis and found evidence to support a 

delayed density dependent relationship between prevalence of antibodies in spring and deer 

mouse abundance the previous fall in Montana. However, four years later, Carver et al. 

(2011) tested the same hypothesis with a more inclusive (more locations) dataset, and found 

a significant delayed density dependent relationship at only one of 12 grids analyzed. 

Delayed density dependence in some cases, together with the lack of statistical significance 

of the relationships between antibody prevalence and abundance shown here, seem to 

suggest there are other factors, besides abundance, influencing prevalence of infection. 

Factors such as differences in vegetation types or rodent biodiversity, or intrinsic 

characteristics of the population, such as the proportion of adults and juveniles, could be 

affecting viral transmission (Klein et al. 2002, Linard et al. 2007, Clay et al. 2009). 

Moreover, this and other factors could also be affecting transmission via changes in the 

expected seasonal fluctuations in abundance. Figs. 2 and 3 show that abundance in some 

years increases from autumn to spring implying there can be low winter mortality and/or 

winter breeding. This deviation from the expected pattern would decrease the juvenile 

dilution effect on prevalence due to the reduction in mortality in winter causing peaks in 

both abundance and in hantavirus infection in the following spring.

What does seem clear, however, is that even when prevalence does not increase with current 

population size, the number of antibody positive mice does increase (Mills et al. 2010, 

Palma et al. 2012). In terms of human risk the antibody prevalence in deer mice is probably 

not as important as the number of infected mice in the environment.

 Conclusion: Is 10–19 years sufficient to describe/explain the variability in the deer 
mouse/hantavirus system?

The response of deer mouse populations to climate/weather in Montana is neither clear nor 

consistent. As the state name indicates, Montana is mountainous and the series of mountain 

ranges can significantly affect local climate. If deer mouse populations do respond to 

climate, the response is likely to be local (Douglass et al. 2001, Mills et al. 2010) as it was at 

Cascade (Luis et al. 2010). The response of vegetation to increased precipitation in arid 
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southwestern US environments is probably greater than in the mesic environment of 

Montana and may produce the El Niño effect on plants and deer mice that have been 

hypothesized. Through two El Niño events, deer mouse habitats seem to have responded 

with increased plant productivity and particularly seed production and deer mouse 

abundance and distribution increased for up to three years (Yates et al. 2002, Mills 2005). 

Other species of rodents in other systems are likely to respond in equally complex ways as 

do different populations of deer mice across large geographic areas and altitudinal gradients.

Again, deer mice eventually, with frequent sampling (Carver et al. 2010) over years and with 

sophisticated modeling techniques, may be clearly shown to respond to weather in mesic 

environments but the response is likely to be local, inconsistent, and will include intrinsic 

deer mouse population factors. Clear responses to weather may be easier to detect in the 

southwestern US where El Niño events produce dramatic responses in plant communities 

where deer mouse populations are not always present.

If other rodent/disease systems are as complex as the deer mouse/SNV system, explanations 

and models are going to be more local than general as suggested by Douglass et al. (2001) 

and Mills et al. (2010) and require extended periods of field sampling.
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Figure 1. 
Six small mammal trapping locations in Montana. CMR = CM Russell Wildlife Refuge.
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Figure 2. 
Deer mouse minimum number alive (MNA) and prevalence of antibodies to Sin Nombre 

virus from June 1994 to October 2005 in (A) Cutbank, (B) Gold Creek, (C) Wisdom, (D) 

CM Russell Wildlife Refuge. MNA was calculated on the three grids at each location while 

the percentage of antibody positive mice was calculated on two grids. Black squares identify 

MNA; grey circles identify percentage of antibody positive mice.
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Figure 3. 
Deer mouse minimum number alive (MNA) and prevalence of antibodies to Sin Nombre 

virus in (A) Cascade and (B) Polson from June 1994 to April 2013. In Cascade trapping was 

carried out continuously throughout the year while in Polson only on those months without 

snow (from May to October). Black squares identify MNA; grey circles identify percentage 

of antibody positive mice.
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Figure 4. 
Relationships between (A) average prevalence of antibodies to Sin Nombre virus in deer 

mice and average minimum number alive (MNA), and (B) average minimum number of 

infected mice and average MNA. Data are averages from 10 grids trapped from 1994 to 

2005 in central and western Montana.
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